V Simpósio de Iniciação Científica Ciência, Tecnologia e Inovação no Brasil

Caracterização estrutural e elétrica de filmes finos de TiO2

Lucas Costa Leite¹ (IC), Danilo Roque Huanca (PQ)¹ ¹Universidade Federal de Itajubá

Palavras-chave: Heteroestruturas. Caracterização elétrica. Ferramenta computacional

Introdução

Os modernos dispositivos eletrônicos são basicamente compostos por um conjunto de resistores, capacitores, transistores, etc. Os transistores são dispositivos predominantemente feitos de silício. O universo dos dispositivos semicondutores é também composto por diodos, que são os dispositivos semicondutores mais simples uma vez que são formados pela junção semicondutor-semicondutor ou metal-semicondutor. Os detalhes do mecanismo de funcionamento dos diferentes tipos de diodos são amplamente conhecidos na literatura (SZE; NG, 2007; NEAMEN, 2012). Se os semicondutores são diferentes, então a junção e conhecida como heterojunção. Como exemplo desse tipo de junção podemos mencionar à junção TiO₂/ITO (LIN et al., 2019). A principal característica elétrica de um diodo é sua condutividade unipolar, sendo preferencial na polarização direta, porém essa característica é depende na concentração de estados de interface (EI); na ausência de esses EI, a corrente sob polarização reversa é na ordem de micro ou até mesmo nanoamperes, ao passo que na presença de EI a corrente reversa pode alcançar valores próximos da corrente sob polarização direta, em cujo caso a junção é conhecida como junção ôhmica (SZE; NG, 2007; NEAMEN, 2012). Assim, a fim de conferir a qualidade de uma heterojunção é necessário caracterizá-lo eletricamente quer seja medindo a relação corrente-voltage e/ou impedância elétrica (CESIULIS et el., 2016; CHEUNG et al., 1986; SCONZA et al., 1994)

Neste trabalho foram caracterizadas eletricamente filmes finos de TiO₂ depositados em silício planar e poroso por meio de medidas de corrente-voltagem e impedância elétrica com o propósito de investigar o efeito do tipo de substrato sobre a resposta elétrica desses dispositivos. Dito objetivo foi alcançado por meio do ajuste das curvas corrente-voltagem e impedância elétrica a modelos teóricos existentes na literatura especializada (RAWAT et al., 2017; HUANCA et al., 2022; HUANCA, 2021) com ajuda da ferramenta computacional Python, que proporciona um ambiente de intuitivo de programação, facilitando o ajuste de formulas mais complexa usadas na obtenção

dos parâmetros.

Metodologia As amostras a serem analisadas foram filmes finos depositados sobre substrato de silício cristalino tipo p e tipo n, bem como em substrato de silício poroso. Os filmes foram depositados por meio da técnica sol-gel, cujos detalhes encontra-se em (RAWAT et al, 2017). Contudo, como ponto de partida, ajustou-se as curvas IxV de diodos comerciais medida a 200 K e 305 K (Figura 1) e para isso empregou-se a relação da corrente com a voltagem, dada pela equação a seguir (SZE; NG, 2007; NEAMEN, 2012).

$$I = I_s \left[exp\left(\frac{qV}{nkT}\right) - 1 \right] \tag{1}$$

Onde I_s é a corrente de saturação, n é o coeficiente de idealidade e V a voltagem aplicada.

As propriedades elétricas no modo de sinal alternado foram investigadas por meio da medida da impedância, aplicando um sinal de voltagem alternado com amplitude igual a 10 mV e frequência de varredura entre $0,1 e 10^5$ Hz. Para ajuste dessas curvas empregou-se o modelo que considera o elemento de constante de fase (CPE) em lugar de capacitores, uma vez que CPE leva em consideração irregularidades decorrentes da rugosidade das interfaces e não- homogeneidades associadas à coexistência de dois materiais em cada interface. Assim, a impedância para cada CPE é dada por (CESIULIS et el., 2016).

$$Z_{ECP} = \frac{\omega}{c} e^{i\frac{\pi n}{2}}$$
(2)

Onde *n* correlaciona as imperfeições das interface e igual à unidade para um capacitor ideal.

Figuras 1 – Ajustes lineares sobre a equação de diodo ideal em um diodo de Si poroso com TiO₂.

O circuito equivalente proposto para tal fim mostra-se

V Simpósio de Iniciação Científica

Ciência, Tecnologia e Inovação no Brasil

na Figura 1, onde CPE_1 e R_1 descrevem os efeitos capacitivos e resistivos, respectivamente, para a interface contato/Si, ao passo que para a interface TiO_2/Si é denotado por CPE_2 e R_2 . Finalmente, a junção contato/ TiO_2 é representada por CPE_3 e R_3 . Rs leva em conta as resistências associadas aos fios do equipamento para realizar a medida.

O ajuste das curvas experimentais, tanto da corrente – voltagem, quanto das de impedância foram realizadas por meio de um código escrito em Python devido às diferentes ferramentas embutidas na sua libraria.

Resultados e discussão

Para reproduzir a curva, pelo menos na região bemcomportada, foi necessário extrair I_s e n por meio do ajuste da região linear, destacada pelas linhas em vermelho na curva IxV da Figura 2, e os resultados são resumidos na Tabela 1. Esses resultados, em particular o de n, indicam que os diodos comerciais se comportam próximo do diodo ideal em baixas temperaturas, visto que n se aproxima de 1.

Figura 2 – Ajuste IxV sobre diodos comerciais a diferentes temperaturas.

Tabela 1 – Coeficiente de idealidade e corrente de saturação para diodos comerciais a diferentes temperaturas.

Temperatura (K)	$I_{s}\left(\mathrm{A} ight)$	п
200	1.21×10^{-13}	1.32
305	5.77x10 ⁻⁹	1.85

Para o caso das heterojunções, estas foram caracterizadas por meio do ajuste da curva experimental usando o modelo de dois diodos Schottky unidos em série, $I=I_1-I_2$, como sugerido por alguns autores (CHEUNG; CHEUNG, 1986) e (SCONZA et al, 1994), como no caso das junções polianilina com silício poroso (HUANCA et al., 2022; HUANCA, 2021). Para esses diodos a relação da corrente – voltagem obedece a equação 1, porém I_s e *n* diferem da junção pn e são expressos como segue

$$I_s = A T^2 e^{\frac{-q\omega}{kT}}$$
(2)

$$n = n_0 + BV \tag{3}$$

Onde A^* é constante de Richardson que para o caso do silício tipo p é igual a 120 Am⁻²k⁻², ao passo que para o tipo n é 32Am⁻²k⁻². Já para o TiO₂, esta é igual a 1365 Am⁻²k⁻². n_0 representa o coeficiente de idealidade na ausência de EI, B é um parâmetro de ajuste que representa a contribuição EI em função da voltagem aplicada. Φ é a barreira da junção.

Figura 3 – Curva semilogaritmica da correntevoltagem das amostras de Ti O_2 sobre

Para o ajuste, a relação IxV foi graficada em escala semilogaritmica a fim de visualizar melhor o ajuste, como se mostra na Figura 3. Os resultados do ajuste foram resumidos na Tabela 2 é indicam que apesar dos filmes serem depositados sob as mesmas condições experimentais, os coeficientes de idealidade e a barreiras são diferentes, sendo maior $\Phi_1 e \Phi_2$ a para os dois diodos associados à amostra T9 (TiO₂/Silício poroso), ao passo que menor para a junção TP1 (TiO₂/p-Si). A análise dos coeficientes de idealidade e dos parâmetros B, indicam comportamento contrário, observando-se maiores valores de n_0 e B para TP1 e menores para T9.

Visto que o único parâmetro diferente entre esses dispositivos é o substrato, então essas diferenças podem ser interpretadas como sendo o resultado do efeito do substrato associados não apenas com a posição dos níveis de Fermi, que são diferentes para o silício tipo P e tipo n. A maior barreira para a amostra T9, poderia estar associado com a presença elevada de uma camada intermediaria de óxido de silício nativo devido à elevada reatividade do silício poroso. Esta suposição é confirmada pela análise de impedância, como se verá mais adiante.

Tabela 2-Coeficiente de idealidade e altura da barreira extraída do ajuste das curvas corrente-voltagem.

V Simpósio de Iniciação Científica

Amaatua	Diodo 1		Diodo 2			
Amostra	n_{01}	$B_1(V^{-1})$	$\Phi_1(V)$	n ₀₂	$B_2(V^{-1})$	$\Phi_2(V)$
TP1	17.43±0.44	5.21 ± 0.05	0.672 ± 0.001	3.39 ± 0.27	5.37 ± 0.13	0.843 ± 0.005
TN4	9.40 ± 0.40	8.26 ± 0.06	0.784 ± 0.001	4.85 ± 0.17	4.58 ± 0.03	0.929 ± 0.002
T9	2.83 ± 0.09	3.75 ± 0.02	0.917±0.002	1.90 ± 0.05	3.26 ± 0.01	0.989 ± 0.002

Em relação às medidas de impedância, a Figura 4a mostra as curvas de Bode fase e Bode modulo, onde também é incluído as curvas de ajuste (linhas tracejadas cor vermelho). Na Figura 4b, mostra-se a curva de Nyquist. A presença de apenas uma semicircunferência é característica de sistemas com uma fase. Entretanto, nosso sistema é constituído por duas fases: Si e TiO₂ dando lugar a três interfaces. Resultados análogos foram reportados na literatura na junção de silício poroso, polianilina e SiO₂ (TOLEDO et al, 2018).

Figura 5 – (a) Curvas de Bode modulo (azul) e Bode fase (verde). (b) Curva de Nyquist correspondente à amostra TP1.

Embora inicialmente proposto a o circuito equivalente da Figura 1, o melhor ajuste foi possível apenas considerando duas interfaces. A presença de apenas duas interfaces, é coerente com a ideia de os dispositivos serem modelados por apenas dois diodos. Este fato indica que uma das junções se comporta como sendo a junção ôhmica, passando a adicionar o valor de Rs. De fato, os resultados do ajuste realizado para o caso da amostra TP1, por exemplo, são mostrados na Tabela 3 e mostram um valor muito elevado para Rs = 2700 Ω , que é incoerente para nosso caso uma vez que os fios condutores devem ter resistência pequenas. Assim, o valor elevado de Rs explica-se assumindo um contato ôhmico na junção TiO₂/contato. O valor elevado de R2 (5400 Ω) é coerente com a banda proibida entorno de 3.2 eV (ARAUJO et al., 2018). Assim, a análise da impedância e das curvas IxV indica que o TiO₂ sobre Si forma uma junção que pode ser representa por dois diodos.

Tabela 3 – Características elétricas extraídas do ajuste das curvas de impedância da amostra TP1.

Elemento	R (Ω)	$Q(F/cm^{-2})$	n
Diodo1	200	13x10 ⁻⁹	0.93
Diodo2	5400	1.6x10 ⁻⁸	0.91
Rs	2700		

Conclusões				
Filmes finos de TiO2 sobre silício formam				
heterojunções cujas propriedades elétricas são				
influenciadas pelo tipo de substrato, uma vez que a				
relação substrato-TiO2 determinam o tamanho da				
barreira energética na interface. O valor da barreira e do				
coeficiente de idealidade foram determinadas com				
ajuda do Python, mostrando-se, assim, o Python ser				
uma excelente ferramenta para esses fins.				

Agradecimento

Gostaria de agradecer aos meus pais por possibilitarem meus estudos longe de casa, ao meu professor por incentivar a auxiliar neste projeto e a FAPEMIG por financiar tal ação.

Referências

CESIULIS, H.; TSYNTSARU, N.; RAMANAVICIUS, A.; RAGOISHA, G.. **The Study of Thin Films by Electrochemical Impedance** Multifunctional Applications, [S.L.], p. 3-42, 2016. Springer Spectroscopy. Nanostructures And Thin Films For International Publishing.

ARAUJO, D. S.; DINIZ, V. C. S.; TORQUATO, R. A.; De MELO COSTA, A. C. F. Avaliação gap óptico do

V Simpósio de Iniciação Científica

Ciência, Tecnologia e Inovação no Brasil

TiO2 pelo método Pechini: Influência da variação das fases anatásio-rutilo. **Materia**. e-11949. 2018

CHEUNG, S. K.; CHEUNG, N. W.. Extraction of Schottky diode parameters from forward currentvoltage characteristics. **Applied Physics Letters**, [S.L.], v. 49, n. 2, p. 85-87, 14 jul. 1986. AIP Publishing.

HUANCA, D. R.; OLIVEIRA, A. F.; RUBINGER, R. M. Fabrication and characterization of heterojunction made of porous silicon and polyaniline synthesized by chemical and electrochemical routes. **Materials Research Bulletin**. 111762. 2022.

HUANCA, D. R. Aluminum modified silicon surfaces: optical and electrical characterization. **Applied surface Science**. 150496. 2021.

LIN, Chia-Hua *et al.* Fabrication of p-type TiO2 and transparent p-TiO2/n-ITO p-n junctions. **Aip Advances.** 045229. abr. 2019.

NEAMEN, Donald A. **Semiconductor Physics and Devices**. 4. ed. New York: Mc Graw Hill, 2012. 758 p.

RAWAT, G.; KUMAR, H.; KUMAR, Y.; KUMAR, C.; SOMVANSHI, D.; SATYABRATA, J. Effective Richardson Constant of Sol-Gel derived TiO2 films in n-TiO2/p-Si heterojunctions. **IEE Electron Devices Letters**. p. 633-636. May. 2017.

SCONZA, A.; TORZO, G.; VIOLA, G. Experiment on the physics of the PN junction. **American Journal of Physics**, [S.L.], v. 62, n. 1, p. 66-70, jan. 1994. American Association of Physics Teachers (AAPT). http://dx.doi.org/10.1119/1.17713.

SZE, S. M.; NG, Kwog N. **Physic of Semiconductor Devices**. New Jersey: Wiley-Interscience, 2007. 815 p.

TOLEDO, R. P.; DIAS, C. E. S.; HUANCA, D. R.; SALCEDO, W. J. Physical and chemical characterization of PANI/SiO2/MPS heterostructure to be used as high sensitivity chemosensor for naphthalene. **Sensor and Actuator B**. p. 445-455. December 2018.