V Simpósio de Iniciação Científica

Ciência, Tecnologia e Inovação no Brasil

ESTUDOS E APLICAÇÕES DA TECNOLOGIA LORA NO CONTEXTO DA INDÚSTRIA 4.0

Mikaelle de Oliveira Ribeiro¹ (IC), Danilo Henrique Spadoti (PQ)¹

¹Universidade Federal de Itajubá.

Palavras-chave: Automação. Comunicação sem fio. LoRa. ESP32.

Introdução

A quarta Revolução Industrial teve seu início na Alemanha, a qual buscava incessantemente por um processo produtivo mais eficiente e com técnicas cada vez mais automatizadas, capazes de realizar monitoramento e atuação em tempo real. A conectividade é uma das principais características da Industria 4.0. (SILVEIRA, 2016). Com o avanço das tecnologias de comunicação, diversos métodos para transmitir informações com e sem fio, foram desenvolvidas.

O presente trabalho de Iniciação Científica apresenta o desenvolvimento de uma esteira rolante que realiza o monitoramento de peças para o controle automático de um processo de contagem utilizando tecnologia de comunicação LoRa a qual é responsável por transmitir os dados sem fio a longas distâncias e com baixo consumo de energia. Tal tecnologia vem sendo muito empregada no ramo de Internet das Coisas como por exemplo, na implementação de projetos de cidades inteligentes.

Buscou-se projetar desde a modelagem estrutural até a atuação e comunicação. Todo o processo é realizado em tempo real com o objetivo de validar na prática, a tecnologia de comunicação Lora em aplicações industriais.

Metodologia

Inicialmente, toda parte estrutural da esteira seria fabricada em Impressora 3D, por meio de manufatura aditiva. Entretanto, devido ao tamanho das peças, a estrutura modular poderia ser comprometida. Então, optou-se por realizar a confecção da estrutura principal com MDF de 3mm. Devido à complexidade e especificidade das demais peças, estas foram fabricadas pela impressora 3D do modelo GTMAX3D CORE A1V2, presente no laboratório LabTel-LaIoT da UNIFEI. Na *Figura* (1) está o rolete da esteira, responsável pela tração do movimento em seu arquivo CAD e já confeccionado pela impressora 3D.

Figura 1 - Rolete fabricado em impressora 3D

Após isso, os componentes foram posicionados e a programação dos microcontroladores ESP32 foi realizada para integrar os dispositivos por meio de comunicação LoRa.

LoRa (do inglês, Long Range) é uma tecnologia de radiofrequência capaz de transmitir e receber informações a longas distâncias, com baixo consumo de energia. Então, para realizar a integração dos microcontroladores, estabeleceu-se a comunicação via tecnologia LoRa, que envia pequenos pacotes de informações por radiofrequência. Ao detectar a inserção de peça na esteira, um dos microcontroladores estabelece comunicação, informando a necessidade de atuação do motor. Da mesma forma, um segundo ESP32, se comunica com o microcontrolador responsável por comandar o motor, quando não existe mais peças sob a esteira. Realizando assim, a atuação da esteira de forma automática por comunicação sem fio. A figura 2, representa a lógica de programação utilizada.

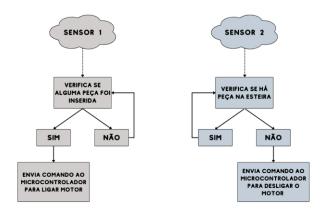


Figura 2 - Lógica para programação dos microcontroladores

V Simpósio de Iniciação Científica

Ciência, Tecnologia e Inovação no Brasil

Com a estrutura montada, componentes devidamente posicionados e a interação por meio da comunicação LoRa, estabelecida. Deu início aos testes e ajustes finais. Foi necessário o ajuste de detecção dos sensores para a contagem das peças, assim como a velocidade compatível do motor para que o sistema funcionasse sem perda de dados. Com os ajustes realizados, obteve-se o processo controlado de forma automática e em tempo real, atuando ou não a esteira de acordo com a presença de peças.

A Figura (3) mostra o resultado final da estrutura, já com os componentes e o processo em funcionamento.

Figura 3 - Processo em funcionamento

Resultados e discussão

Com intenção de verificar o funcionamento do controle realizado pelo protótipo, uma simulação com 15 procedimentos de inserção de peça foi realizada. Obtevese um resultado satisfatório com 93,34% de sucesso.

Tabela 1 - Dados do funcionamento

Simulação do funcionamento do processo	
N° do procedimento	Resultado
1	Funcionamento correto
2	Funcionamento correto
3	Funcionamento correto
4	Funcionamento correto
5	Funcionamento correto
6	Funcionamento correto
7	Funcionamento correto
8	Funcionamento correto
9	Funcionamento correto
10	Funcionamento correto
11	Funcionamento correto
12	Funcionamento correto
13	Funcionamento incorreto
14	Funcionamento correto
15	Funcionamento correto

Para uma análise de alcance, a fim de validar aplicações em distâncias maiores, realizou-se um teste dentro da UNIFEI para detectar o RSSI. As medições RSSI representam a qualidade relativa de um sinal recebido em diferentes distâncias. Para isso, desconectou o motor e foi deixada uma peça frente ao Sensor1. Com o ESP32 receptor de sinal, foi percorrido uma distância máxima de aproximadamente 400 metros e anotado o resultado obtido para analisar a transmissão do sinal entre o ESP32 emissor, que coleta as informações do Sensor1 e o ESP32 receptor.

Tabela 2 - Dados de alcance

Simulação de alcance	
Distância [m]	RSSI [dBm]
5	-60
10	-80
60	-92
200	-115
350	-127
400	-129

É importante ressaltar que o ambiente percorrido é composto por edifícios e árvores, que causam obstrução do sinal.

Pode se observar que mesmo com obstruções de sinal, obteve-se uma distância significativa provando que é possível a implementação da tecnologia LoRa em diversas aplicações sem que haja necessidade de conexão com a internet.

Por fim, pode-se destacar que este protótipo apresenta um custo viável para implementação prática em indústria. Sendo os dois principais dispositivos utilizados para realizar a comunicação o microcontrolador ESP32-Healtec de custo de 230,00 reais e os sensores infravermelhos de aproximadamente 8,00 reais.

Conclusões

Unindo aprendizados teóricos e práticos, as atividades realizadas durante o desenvolvimento deste trabalho contribuíram de forma satisfatória para a compreensão das novas tecnologias desenvolvidas ao longo dos anos e das diversas aplicações dentro da Indústria. Ficou evidente o quanto o avanço das tecnologias de comunicação, foram capazes de expandir as possibilidades não só no ambiente industrial, tornado possível o monitoramento e controle de uma esteira em tempo real, mas também como nas tarefas do dia a dia. A

V Simpósio de Iniciação Científica

Ciência, Tecnologia e Inovação no Brasil

troca e coleta de dados que antes era difícil e muitas vezes inviável, torna-se cada vez mais eficiente. Como o caso da tecnologia LoRa, por exemplo, que viabilizou o monitoramento em tempo real do protótipo sem o uso de internet. Ademais, foi possível perceber o quanto a chegada das Impressoras 3D, revolucionaram a fabricação de peças, principalmente aquelas que demandam designs específicos e são confeccionadas sob medida, como foi o caso dos roletes da esteira desenvolvida no projeto. Por fim, todo o conhecimento adquirido com os estudos e as aplicações mostrou a importância da busca de novas tecnologias como as apresentadas nesse trabalho, para que os processos continuem a evoluir cada vez mais.

Como ideias para trabalhos futuros, tem-se a separação de peças por cor e formato. E também a implementação do protocolo de comunicação LoRaWAN a fim de estabelecer uma conexão do processo direta com a nuvem para armazenamento e exibição de dados à distância em tempo real.

Agradecimento

Agradecimentos ao CNPq, que constantemente fomenta a pesquisa em nosso país, ao professor Dr. Danilo Henrique Spadoti, pelo desafio proposto, e a toda equipe de colaboradores do Laboratório de Telecomunicações e Internet das Coisas - Unifei (LabTel-LaIoT).

Referências

ALMEIDA, Hyggo. **Internet das Coisas: tudo conectado.** Computação Brasil, v. 25, p. 58, 2015.

ADELANTADO, Ferran et al. Understanding the limits of LoRaWAN. IEEE Communications magazine, v. 55, n. 9, p. 34-40, 2017.

BERMAN, Barry. **3-D printing: The new industrial revolution**. Business horizons, v. 55, n. 2, p. 155-162, 2012.

BERTOLETI, P. **Projetos com ESP32 e LoRa**. [S.l.]: Instituto NCB, 2019.

HELTEC, A. **ESP-32 LORA**. Site da empresa Heltec Automation, 2019. Disponivel em: https://heltec.org/project/wifi-lora-32/>. Acesso em: 20 out, 2019.

PHAM, Congduc. **Low-cost, low-power and long-range image sensor for visual surveillance.** In: Proceedings of the 2nd Workshop on Experiences in the Design and Implementation of Smart Objects. 2016. p. 35-40.

SILVEIRA, Cristiano Bertulucci; LOPES, Guilherme Cano. **O** que é Indústria 4.0 e como ela vai impactar o mundo. 2016. Disp<www.citisystems.com.br, 2018. Acesso em: 14 mai.2022.