Ciência, Tecnologia e Inovação no Brasil

MODELAGEM E SIMULAÇÃO POR FLUIDODINÂMICA COMPUTACIONAL DA TRANSFORMAÇÃO DE METANOL PARA OLEFINAS EM MICRORREATORES BIFÁSICOS CONTÍNUOS COM DESATIVAÇÃO DE CATALISADOR

Mariana Borges de Oliveira¹ (IC), Maximilian Joachim Hodapp (PQ)¹ ¹Universidade Federal de Itajubá

Palavras-chave: Fluidodinâmica computacional. Microrreatores. Modelagem. Processo MTO. Simulação.

Introdução

Olefinas leves, como eteno e propeno, são importantes intermediários para a indústria petroquímica, produzidas, usualmente, por craqueamento, a partir de gasóleo ou nafta. Nota-se, atualmente, o crescimento da preocupação global acerca dos impactos ambientais provocados pela utilização de combustíveis fósseis, o que impulsionou o investimento em pesquisas de rotas alternativas de geração de energia e de recursos essenciais para a indústria.

O processo Methanol to Olefins (MTO) corresponde a um método de obtenção de olefinas leves por meio de recursos presentes em abundância, como o carvão, gás natural e biomassa. A necessidade de viabilizar novos processos promoveu ainda o surgimento de diferentes técnicas, como os microdispositivos. A microfluídica refere-se à manipulação de pequenas quantidades de fluido em canais de dimensão micrométrica. Em pesquisas, os microdispositivos permitem o uso de pequenas quantidades de reagentes, reduzindo os custos, além de apresentarem alta sensibilidade e resolução de separações, favorecendo o controle das concentrações (WHITESIDES, 2006). Para processos multifásicos, sistemas microfluídicos reduzem as limitações relacionadas à transferência de massa e apresentam maiores velocidades de mistura. O desenvolvimento de tecnologias em microdispositivos é favorecido pela utilização de simulações computacionais, pois torna-se facilmente distintas possível avaliar condicões operacionais (JAMSHED, 2015). Nesse contexto, o método Computational Fluid Dynamics (CFD) é um dos mais adequados.

O presente trabalho apresenta o estudo, por simulações a partir do *software* comercial ANSYS CFD, da transformação de metanol em olefinas em microrreatores de leito fixo, preenchidos com partículas de catalisador, modificando-se as condições operacionais. Esse estudo é relevante, visto que a formação de coque pode provocar o processo de desativação do catalisador, reduzindo consideravelmente a atividade catalítica e a seletividade dos produtos, devido à retenção do material nos poros e na superfície externa (ZHOU *et al*, 2019).

Metodologia

O trabalho foi desenvolvido a partir de informações de malha e geometria validadas por experimentos desenvolvidos em trabalhos anteriores pelo grupo de pesquisa para reações em estado estacionário. O microrreator apresenta área de seção transversal retangular de 4,8 μ m² e comprimento de 2,0 · 10⁴ μ m, conforme a Figura 1.

Fonte: autoria própria.

As equações governantes calculadas pela ferramenta são equações de Navier-Stokes que representam os balanços para a quantidade de movimento e energia (ANSYS CFX SOLVER GUIDE, 2011). As reações do processo MTO estão representadas, esquematicamente, na Figura 2.

Figura 2 - esquema das reações do processo MTO.

O modelo cinético utilizado para o processo MTO foi desenvolvido por Yang *et al* (2015) experimentalmente. Nesse modelo, os produtos são organizados em: metano (1), eteno (2), propeno (3), propano (4), hidrocarbonetos do grupo C_4 (5), hidrocarbonetos dos grupos C_5 e C_6 e etano (6) e coque (7). A formação para cada grupo está

V Simpósio de Iniciação Científica

Ciência, Tecnologia e Inovação no Brasil

descrita nas Equações de (1) a (6), em que k_i é a constante cinética de cada reação, C_{MeOH} a concentração de metanol e Mw o peso molecular. O grupo (7) não foi considerado.

$$R_{CH_4} = k_1 \theta_W C_{MeOH} M w_{C_{H_4}} \tag{1}$$

$$R_{C_2H_4} = \frac{1}{2} \times k_2 \theta_W C_{MeOH} M w_{C_{2H_4}}$$
(2)

$$R_{C_3H_6} = \frac{1}{3} \times k_3 \theta_W C_{MeOH} M w_{C_{3H_6}}$$
(3)

$$R_{C_{3}H_{8}} = \frac{1}{3} \times k_{4}\theta_{W}C_{MeOH}Mw_{C_{3H_{8}}}$$
(4)

$$R_{C_4} = \frac{1}{4} \times k_5 \theta_W C_{MeOH} M w_{C_4} \tag{5}$$

$$R_{C_5^+} = \frac{1}{5} \times k_6 \theta_W C_{MeOH} M w_{C_5} \tag{6}$$

O consumo de metanol e água no processo são descritos pelas Equações (7) e (8).

$$R_{MeOH} = -\left(\sum_{1}^{6} k_{i} \theta_{W}\right) \theta_{W} C_{MeOH} M w_{MeOH}$$
(7)

$$R_{H_2O} = \left(\sum_{1}^{6} k_i \theta_W\right) C_{MeOH} M w_{H_2O} \tag{8}$$

As constantes cinéticas foram definidas pela Equação de Arrhenius, descrita pela Eq. (9), em que *T* representa a temperatura e *R* a constante dos gases $(8,314 J K^{-1} mol^{-1})$.

$$k_{i} = k_{i0} \exp\left(-\frac{Ea_{i}}{R}\left(\frac{1}{T} - \frac{1}{723,15}\right)\right)$$
(9)

Considerando-se o efeito da formação de coque sobre as taxas de reação, torna-se necessário adaptar as expressões com a adoção de uma função φ_i , descrita pela Eq. (10), na qual C_c representa o percentual mássico de coque no catalisador e A e B são constantes definidas experimentalmente por Yang *et al* (2015) e com valores iguais a 9 e 2, respectivamente. O percentual crítico de coque D está associado às propriedades do catalisador e é igual a 7,8. O parâmetro α_i corresponde à constante empírica de desativação para cada reação.

$$\varphi_i = \frac{1}{1 + A \exp(B \times (C_c - D))} \exp(-\alpha_i C_c)$$
(10)

Os valores de energia de ativação (Ea_i) , da constante cinética à temperatura de referência de 450 °C (k_{i0}) e as constantes de desativação para cada reação, conforme Yang *et al* (2015), estão contidos na Tabela 1.

Tabala	1	narâmatros	cináticos
Tabela	1 -	Darametros	cineticos

Constante cinética (L g _{cat} -1 min ⁻¹)	k_{i0} (450 °C)	Ea _i (k.I mol ⁻¹)	α _i
k ₁	0,10	117,7	0,06
k ₂	4,93	56,9	0,14
k ₃	7,32	41,9	0,21
k_4	0,52	13,4	0,20
k5	2,60	31,2	0,24
\mathbf{k}_{6}	1,02	45,8	0,27

Fonte: autoria própria.

As equações cinéticas adaptadas estão representadas, de modo generalizado, pela Eq. (11), em que v representa o coeficiente estequiométrico.

$$R_i = v_i k_i \theta_W C_{MeOH} M \varphi_i w_i, \qquad i = 1 - 7 \tag{11}$$

O efeito da água no meio, cuja presença atenua a formação dos produtos, é contabilizada pelo termo θ_W , calculado pela Eq. (12). O parâmetro K_W , de acordo com Gayubo *et al.* (1989), é definido como o termo que contabiliza a resistência à formação de cada produto pela presença de água no meio reacional, cujo valor foi empiricamente determinado como 3,05 (YANG *et al*, 2015), enquanto X_W é a fração de água no meio reacional em base úmida.

$$\theta_W = \frac{1}{1 + K_W X_W} \tag{12}$$

As condições de velocidade de fluido na entrada foram inseridas no pré-processador. Os valores de massa alimentada por hora por massa de catalisador (WHSV) e frações mássicas de água e metanol foram selecionados em conformidade com os experimentos de Yang *et al* (2015). A condição de fronteira de saída foi especificada a partir da pressão relativa. As informações gerais sobre os parâmetros inseridos estão descritas na Tabela 2.

Tabela 2 – caracterização dos contornos

WHSV $(\text{kg kg}_{\text{cat}}^{-1} \text{h}^{-1})$	2,08			
Fração mássica de metanol na alimentação	0,80			
Fração mássica de água na alimentação	0,20			
Pressão relativa na saída	0 Pa			
Fonte: autoria própria				

Fonte: autoria própria. O fluido é uma mistura definida a partir dos componentes das reações do processo MTO e de CO₂, utilizado como um gás inerte para aumento da estabilidade numérica. No presente trabalho, o escoamento bifásico (sólido e gasoso) foi simplificado para a solução em fase gasosa. A fase sólida, constituída pelo catalisador, foi incluída no modelo por meio de um escalar transportado sem efeitos de difusão ou convecção, apenas contabilizando o acúmulo no balanço, representando sua desativação ao

longo do tempo. Algumas condições, como a porosidade, foram alteradas em diferentes simulações para comparação.

As propriedades do catalisador inseridas na modelagem estão relacionadas às propriedades do silicoaluminofosfatos sintetizados, comercialmente conhecidos como SAPO-34, amplamente utilizados em processos MTO devido à alta seletividade em relação às olefinas leves. O modelo de resolução de escoamento em meio poroso considera que os volumes de controle são grandes em relação aos espaços intersticiais do meio, mas menores em relação à escala de resolução do problema.

V Simpósio de Iniciação Científica Ciência, Tecnologia e Inovação no Brasil

Assim, admite-se que os elementos de controle contêm regiões sólidas e gasosas.As características do fluido de domínio e do catalisador estão descritas na Tabela 3.

Tabela 3 - caracterização do meio poroso

Composição da mistura	CH ₃ OH, H ₂ O, C ₂ H ₄ , C ₃ H ₆ , C ₃ H ₈ , C ₄ H ₈ , C ₅ ⁺ , CH ₄ , CO ₂
Variável adicional	Coque
Diâmetro de partícula de catalisador	8,23.10 ⁻⁵ m
Densidade da partícula de catalisador	1220 kg m ⁻³
Porosidade	0,4 e 0,6
Permeabilidade	6,09.10 ⁻¹¹ m ²
Coeficiente de perda de resistência	78754,3 m ⁻¹

Fonte: autoria própria.

Após a inserção da modelagem e dos parâmetros, diferentes condições de operação foram arbitradas para a avaliação das variações sobre a formação de produtos e desativação do catalisador em estado transiente.

Resultados e discussão

A Figura 3 representa o aumento do percentual de coque no reator ao longo do tempo para as diferentes condições operacionais simuladas.

Figura 3 – formação de coque em casos isotérmicos 60 s 300 s 600 s 900 s 1200 s 1500 s 1800 s 60 s 300 s 600 s 900 s 1200 s 1500 s 1800 s ISOTÉRMICO A 723 K ISOTÉRMICO A 673 K 900 s 1200 s 1500 s 1800 s ISOTÉRMICO A 748 K ISOTÉRMICO A 748 K COM A PRESENÇA DE VAPOR DE ÁGUA 900 s 1200 s 1500 s 1800 s 600 s 0,0 2,5 5,0 7,5 10,0 ISOTÉRMICO A 748 K COM Coque (%) **POROSIDADE IGUAL A 0,4**

Fonte: autoria própria.

Em relação aos produtos e reagentes envolvidos na reação MTO, nota-se que o metanol é convertido rapidamente ao início e, ao longo do reator, a fração mássica do reagente tende a subir gradativamente, em razão da desativação do catalisador, em decorrência da transformação de intermediários ativos em coque. Observa-se que a desativação do catalisador aumenta com a temperatura, em decorrência da formação de coque.

A alteração da temperatura pode afetar a razão entre os principais produtos da reação. Quanto maior a temperatura, maior a razão de formação de eteno em relação ao propeno. Nota-se ainda que a presença de vapor atenua a formação de produtos, indicando que, quanto maior for essa quantidade, menor será a conversão do metanol. Entretanto, a adição de água é, na prática, importante para a diminuição da formação de coque e para o controle da temperatura. A redução da porosidade provoca o avanço mais lento do incremento de metanol ao longo do reator e o aumento da razão da formação de eteno pela formação de propeno, o que indica a possível influência do empacotamento do leito sobre a seletividade.

Nos casos não-isotérmicos, o aumento da quantidade de metanol decorrente da desativação do catalisador ocorre nos primeiros segundos de reação. Os perfis de porcentagem de coque para os casos não-isotérmicos estão contidos na Figura 4.

NÃO-ISOTÉRMICO, ENTRADA A 698 K E PAREDE A 553 K

Fonte: autoria própria.

0.0

2.5

5.0

Coque (%)

7.5

10.0

V Simpósio de Iniciação Científica

Ciência, Tecnologia e Inovação no Brasil

Os maiores valores de temperatura são observados na zona de reação, o que indica grande liberação de energia. De fato, a reação MTO é altamente exotérmica e a variação de temperatura é dependente da desativação do catalisador (ZHUANG *et al*, 2012). A temperatura na corrente de alimentação é responsável por estabilizar a temperatura da reação, assim como a condição de troca de calor com a parede. Isso indica que efeitos cinéticos estão fortemente acoplados aos efeitos térmicos.

De acordo com os experimentos realizados por Yang *et al* (2015), a deposição de coque é rápida no estágio inicial, sendo progressivamente reduzida ao longo do comprimento do reator. Esse decaimento está relacionado à seletividade apresentada pelo catalisador SAPO-34. No presente estudo, não foram observadas porcentagens de coque formado superiores a 10% em nenhum dos casos simulados, o que apresenta concordância com dados experimentais descritos no artigo.

Observa-se que, uma vez que diferentes reatores de leito fixo com WHSV iguais apresentam consideráveis semelhanças em suas operações, a modelagem em CFD nesses casos é fortemente independente das dimensões do reator, especialmente em sistemas isotérmicos, conforme os discutidos por Yang *et al* (2015). Dessa maneira, é possível inferir que a modelagem utilizada é também aplicável a reatores de escala micrométrica. Para casos não-isotérmicos, entretanto, há maior dependência da geometria e dimensões.

Destaca-se que os modelos analisados já haviam sido previamente validados para casos em estado estacionário em trabalhos desenvolvidos anteriormente pelo mesmo grupo de pesquisa, em condições iguais de geometria e malha do reator.

Conclusões

A aplicação da modelagem para a simulação de reações do processo MTO em microrreatores de leito fixo em diferentes condições operacionais apresentou êxito, visto que foi possível avaliar e discutir a influência dos fatores de operação.

Para os casos isotérmicos, observou-se que o metanol é consumido rapidamente no início do reator e, gradativamente, a fração aumenta. A desativação ocorre mais rapidamente a temperaturas mais elevadas e causa efeitos sobre a seletividade. A presença de vapor de água na alimentação do reator foi importante para a redução de formação de coque e controle da temperatura. Outro fator relevante para a análise da reação corresponde ao empacotamento do leito.

Nos casos não-isotérmicos, o incremento do metanol decorrente da desativação do catalisador ocorreu rapidamente no início do reator, o que indica um grande aumento da temperatura na zona de reação. Concluiu-se que a modelagem definida por Yang *et al* (2015) pode ser aplicada a microrreatores de leito fixo, visto que há grande independência das dimensões de reatores de leito fixo em mesmas condições de WHSV. Destaca-se que o percentual de coque foi inferior a 10% em todos os casos, o que está em conformidade com os dados experimentais presentes no mesmo artigo.

A realização do presente trabalho foi fundamental para o conhecimento de promissoras tecnologias e, de modo geral, para a ampliação da visão acerca da contribuição da Ciência para a transformação dos processos e do meio m um contexto em que, cada vez mais, nota-se a eminente preocupação global em relação aos problemas ambientais.

Agradecimento

Agradeço ao Centro Nacional de Desenvolvimento Científico e Tecnológico – CNPq, cujo financiamento possibilitou a existência deste trabalho, e ao Prof. Dr. Maximilian Joachim Hodapp pela orientação.

Referências

ANSYS CFX SOLVER GUIDE. ANSYS, Inc, Canonsburg, 2011.

GABUYO, A.G., *et al.* 2007. Kinetic modeling of the methanol-to-olefins process on a silicoaluminophosphate (SAPO-18) catalyst by considering deactivation and the formation of individual olefins. Ind. Eng. Chem. Res. 46, 1981–1989.

JAMSHED, S. Using HPC for Computational Fluid Dynamics. P. 1-20, dez. 2015. Disponível em: <https://www.researchgate.net/publication/300628334_Introd uction_to_CFD>. Acesso em: 13 set. 2022.

WHITESIDES, M. W. The origins and the future of microfluidics. Nature, V. 442, p. 368-373, jul. 2006. Disponível em: < https://www.nature.com/articles/nature0505 8>. Acesso em: 13 set. 2022.

YING, *et al.* A seven lumped kinetic model for industrial catalyst in DMTO process. Chemical Engineering Research and Design, V. 100, p. 179-191, maio 2015.

ZHOU, J. *et al.* Presituated "coke"-determined mechanistic route for ethene formation in the methanol-to-olefins process on SAPO-34 catalyst. Journal of Catalysis, V. 377, p. 153-162, jul. 2019.

ZHUANG, Y. Q. *et al.* CFD modeling of methanol to olefins process in a fixed-bed reactor. Powder Technology, V. 221, p. 419-430, fev. 2012.