TÍTULO VALORIZAÇÃO DE RESÍDUOS DO CAROÇO DE AÇAÍ PARA ENERGIA RENOVÁVEL: CARACTERIZAÇÃO TÉRMICA E QUÍMICA.

Camily Maggioni Nunes¹ (IC), Hugo Perazzini (PQ)¹

¹Universidade Federal de Itajubá.

Palavras-chave: Açaí. Dtg. Pirólise.. Termogravimetria.

Introdução

A crescente demanda por fontes de energia renováveis e a busca por alternativas sustentáveis têm estimulado a investigação de matériais-primas não convencionais como fontes viáveis para a geração de energia. Nesse contexto, o caroço de açaí (Euterpe oleracea Mart.) tem atraído a atenção como uma fonte potencial de biomassa para a produção de energia sustentável (Cherubini e Stromman, 2011). Originária da região amazônica, essa fruta tropical é consumida em todo o mundo, resultando na geração de resíduos, em particular o caroço, que frequentemente é descartado.

O caroço de açaí, até então subutilizado, apresenta um potencial específico devido à sua composição química rica em lignocelulose. A lignocellulose, composta principalmente por celulose, hemicelulose, lignina e outros componentes, é reconhecida como promissora para a produção de biocombustíveis e energia. Através de processos de térmicos, a biomassa lignocelulósica pode ser convertida em combustíveis e produtos químicos, contribuindo assim para a diversificação da matriz energética e a redução das emissões de gases de efeito estufa.

No entanto, a eficácia do aproveitamento do caroço de açaí depende da avaliação criteriosa de seus parâmetros energéticos, tanto químicos quanto térmicos. Esta pesquisa tem como objetivo central verificar se o caroço de açaí é uma opção viável para a geração de sustentável. considerando energia uma abrangente de seus componentes químicos, bem como de seu comportamento térmico durante a pirólise. Para atingir esse objetivo, serão empregadas técnicas analíticas avançadas, como espectrofotometria, cromatografia líquida de alta eficiência (HPLC) e análise termogravimétrica, a fim de determinar a composição química da biomassa e avaliar a eficiência da conversão térmica em diferentes condições.

O presente estudo visa contribuir para o avanço da pesquisa em energia sustentável, bem como para o desenvolvimento de estratégias eficazes de gestão de resíduos agroindustriais, para avaliar o potencial do caroço de açaí como uma fonte promissora para a produção de energia renovável.

Metodologia

2.1 Material

O material empregado neste estudo consistiu em biomassa de caroço de açaí proveniente de Atibaia, São Paulo, fornecido pela empresa Açaí Villa Roxa. Inicialmente, o material estava congelado; para fins de análise, passou por um processo de secagem ao sol.

2.2 Análise Termogravimétrica

As curvas termogravimétricas foram adquiridas utilizando um detector DTG-60AH (série C30594500039TK), sob uma atmosfera inerte de nitrogênio. As amostras preparadas possuíam uma massa de $10{,}310~\pm~0{,}394~$ mg a serem depositadas no equipamento. Os dados experimentais foram processados utilizando o software Origin 2023, permitindo a análise e a geração de gráficos que representem a perda de massa em relação à variação de temperatura.

2.3 Modelo Isoconvencional – Kissinger

A pirólise de uma biomassa pode ser simplificada como uma única reação, que obedece uma cinética de ordem n (Santos et al, 2020). A conversão da mesma é dada pela equação 2.1:

$$X = \frac{m_0 - m}{m_0 - m_{\infty}} \tag{2.1}$$

na qual m0 representa a massa inicial, m a massa no Instante t e m ∞ a massa remanescente.

A taxa referente a essa decomposição depende de uma constante K que varia com a temperatura, cuja relação é domonstrada pela Equação de Arrhenius (2.2):

$$K(T) = k_0 e^{\frac{-Ea}{RT}}$$
(2.2)

na qual k0 é o fator pré-exponencial, T é a temperatura da amostra, R a constante ideal dos gases e Ea a energia de Ativação. Para calcular a Energia de Ativação, foi empregado o método isoconversional Kissinger. Essa técnica é baseada na variação da temperatura do pico mais alto do DTG (T_{max}) quando a taxa de aquecimento $\beta = dT/dt$ é alterada. Para isso, foi realizado uma regressão linear da equação (2.3) (Kissinger, 1960), com os dados obtidos por uma sequência de experimentos no detector, com as taxas de 5,10,15,20 °C/min.

$$\ln\left[\beta/T_{\text{max}}^{2}\right] = \left[\ln\left[k_{0}R/T\right] - \ln g\left(X\right)\right] - \left[Ea/R\right]\left[1/T_{\text{max}}\right] \quad (2.3)$$

2.4 Análise Química

A determinação das concentrações dos principais componentes presentes no caroço de açaí, incluindo celulose, hemicelulose, lignina, cinzas e extrativos, foi conduzida de acordo com a metodologia proposta por Sluiter (2008), com adaptações específicas para este estudo, realizado no Departamento de Biotecnologia da Universidade de São Paulo, no campus de Lorena.

Inicialmente, foi realizado a remoção dos extrativos por meio do Sistema Soxhlet, utilizando etanol como solvente, por um período de 8 horas. Posteriormente, a solução resultante da remoção foi submetida a duas hidrólises consecutivas: uma hidrólise, empregando ácido sulfúrico a 72% m/m, e outra diluída, utilizando ácido sulfúrico a 8% m/m. Após cada etapa de hidrólise, uma solução foi aplicada à filtração descartável, resultando em uma nova solução. Essa solução foi examinada por espectrofotometria para determinar a absorbância, o qual foi posteriormente convertido em concentrações de lignina solúvel.

A quantificação das concentrações de celulose, hemicelulose e lignina insolúveis foi realizada por meio de Cromatografia Líquida de Alta Eficiência (HPLC). Quanto às cinzas, a determinação foi efetuada pela pesagem da amostra antes e após sua exposição à mufla (575°C, por 4 horas), sendo a diferença entre esses valores correspondente à quantidade de cinzas totais presentes na amostra.

Resultados e discussão

3.1 Análise Termogravimétrica

O resultado termogravimétrico gerou um perfil da massa em relação ao aumento da temperatura Fig.1 (a) e a derivada do percentual da massa em relação ao tempo

(DTG – dm/dt), dependente da temperatura (Fig. 1 (b)). Nesse ultimo gráfico devido aos ruídos experimentais, foi aplicado filtro de suavização: Savitzky-Golay. A pirólise em termos gerais de biomassa, proporciona três estágios principais: desidratação, volatilização e carbonização (Lopes, 2020).

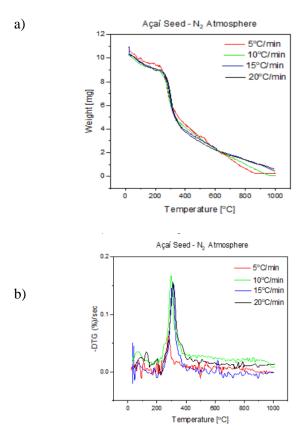


Figura 1 – Curvas de TGA (a) e de termogravimetria derivada do caroço de açaí (b).

A desidratação ocorre com a perca de componentes com baixo peso molecular, como a água. No presente estudo essa fenômeno ocorre próximo aos 100°C, com uma perca de 4,73% da massa. A volatilização corresponde à decomposição hemicelulose e celulose, e o início da decomposição da lignina. Aproximadamente entre 220 e 350°C, houve perca de 44,81%, devido a decomposição da hemicelulose, que possui uma estrutura de baixa polimerização, sendo mais sensível a degradação térmica.

Ao comparar o perfil de pirólise do caroço de açaí com outras biomassas, como o bagaço da laranja, observamos uma diferença notável (Benevides, 2015). Enquanto o bagaço da laranja exibe dois picos distintos no gráfico do DTG, representando a suspensão da hemicelulose e da celulose, o caroço de açaí apresenta um perfil simplificado com apenas um pico principal na mesma faixa de temperatura. Essa singularidade está

ligada à composição do caroço de açaí, que contém uma proporção significativamente maior de hemicelulose.

O pico principal na pirólise do caroço de açaí coincide com a faixa de temperatura em que ocorre a permanência da hemicelulose. Essa característica simplifica consideravelmente o processo de conversão térmica da biomassa. A despolimerização hemicelulose se sobrepõe a outros componentes, incluindo a celulose, resultando na presença de apenas um pico mais relevante. Resultados semelhantes foram corroborados por Santos (2023).

Esta simplificação no perfil de pirólise do caroço de açaí tem implicações significativas para a eficiência dos processos de conversão em energia. A possibilidade de controle e atualização de um único pico de especificação da hemicelulose torna o processo mais eficiente em comparação com biomassas que apresentam múltiplos picos devido à perda de celulose e hemicelulose em diferentes temperaturas.

Ainda na volatilização, entre 350 e 405°C, ocorre a quebra mais específica das ligações da celulose, gerando glicose ou celobiose, com a perca de 13,58% da massa. Comparando com a decomposição hemicelulose, percebe-se uma maior porcentagem desta. Por último, a partir de 415°C ocorre a carbonização, englobando a decomposição de resíduos e a lignina remanescente, perdendo 35,06% da massa. Os resultados estão expressos na Tabela 1.

Faixa de		
Temperatura	Porcentagem de	
(°C)	perca de massa	Processo
0-100	4,73	Perca de umidade
		Decomposição
		majoritária de
220 - 350	44,81	hemiculose
		Decomposição
		majoritária de
350-405	13,58	celulose
_		Decomposição de
		resíduos e lignina
405-1000	35,06	remanescente

Tabela 1. Análise termogravimétrica.

3.2 Modelo Isoconvencional - Kissinger

Para estimar a Energia de ativação necessária para a decomposição do caroço de açaí foi aplicado a Equação 2.3 para a linearização, gerando a Figura 2. Para melhor ajuste linear, foi excluído o ponto referente a taxa de aquecimento de 15°C/min, devido a um baixo valor de coeficiente de correlação que o mesmo proporciona.

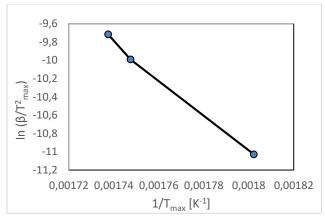


Figura 2. Método de Kissinger.

O valor calculado foi de 164,73 kJ/mol. Conforme estudos de Vanuza Oliveira (2022), a Energia de ativação media do caroço de açaí é de 157,62 kJ/mol, valor próximo ao encontrado no presente estudo, com uma variação de 4,32%, possivelmente devido a erros experimentais. Comparando com outras biomassas lignocelulósicas como a casca de cupuacu (220 kJ/mol), folhas de cana (226,75 kJ/mol) e palha de milho (181,66 kJ/mol) (Santos et al, 2022), o caroço de açaí possui menor Energia de Ativação, dessa forma, poela energia minima necessária para que ocorra a pirólise do açaí ser comparativamente baixa, facilita a formação de produtos finais obtidos pela pirólise, sendo então, um processo menos dispendioso eocnomicamente.

3.3 Caracterização Química

Realizando os procedimentos descritos na metodologia foi obtidos os valores de concoentrações presente na Tabela 2.

Componente	Teor (%)
Celulose	$13,61\% \pm 0,02$
Hemicelulose	$44,48\% \pm 0,11$
Lignina	$21,63\% \pm 0,10$
Cinzas	$1,81\% \pm 0,01$
Extrativos	$3,65\% \pm 0,09$

Tabela 2. Caracterização química do caroço de açaí.

A composição química do caroço de açaí revela uma proporção significativa de hemicelulose (44,48%) em relação à celulose (13,61%). Isso é notável, pois a hemicelulose é mais facilmente solúvel em água e pode ser convertida em açúcares mais rapidamente do que a celulose. Essa característica pode simplificar os processos de conversão em biomassa líquida, como a produção de etanol de geração primeiramente (Zabed et al., 2016).

Por outro lado, a lignina (21,63%) também é um componente importante no caroço do açaí. A lignina é essencial para a produção de energia a partir da biomassa, pois fornece resistência à planta e desempenha um papel na formação de compostos voláteis durante a pirólise (Cherubini e Stromman, 2011).

Em comparação com o bagaço de cana-deaçúcar, que possui uma alta concentração de celulose, o caroço de açaí se destaca pela presença de hemicelulose e lignina. A celulose em bagaço de cana é superior a 40%, tornando-o uma excelente fonte de biomassa para a produção de biocombustíveis de segunda geração, como o etanol celulósico (Hendriks e Zeeman, 2009).

Portanto, a escolha entre celulose e hemicelulose como componente predominantemente depende dos objetivos do processo de conversão. O caroço de açaí apresenta potencial tanto para processos de pirólise que envolvem a produção de biocombustíveis e produtos químicos, devido à presença de lignina, quanto para processos diretos de geração de energia.

Conclusões

Uma análise termogravimétrica do caroço de açaí revelou informações valiosas sobre seu potencial como fonte de energia. Durante a pirólise, foram apresentados três eventos principais: desidratação, volatilização e carbonização. A volatilização, entre 220°C e 350°C, foi o estágio mais significativo, com uma perda de 44,81% da massa. É importante destacar que o caroço de açaí apresentou um perfil de pirólise simplificado, com um único pico principal na faixa de temperatura da hemicelulose, ao contrário de outras biomassas, como o bagaço de laranja, que apresenta múltiplos picos, tornando o processo de conversão térmica mais controlável e eficiente.

Além disso, uma análise química revelou que o caroço de açaí possui uma alta concentração de hemicelulose (44,48%) em relação à celulose (13,61%), o que o torna adequado para processos de conversão em biomassa líquida, como a produção de etanol. A presença significativa de lignina (21,63%) também o torna promissor para processos de térmicos controlados, contribuindo para a produção de biocombustíveis e produtos químicos.

Comparando-o com o bagaço de cana-de-açúcar, que possui uma alta concentração de celulose, o caroço de açaí se destaca pela presença de hemicelulose e lignina. A escolha entre celulose e hemicelulose depende dos objetivos do processo de conversão.

Esses resultados ressaltam a importância da avaliação da composição química ao considerar o caroço de açaí como fonte de biomassa para geração de energia

limpa. A escolha do processo de conversão mais adequado deve levar em consideração a composição química específica e os objetivos da produção de energia a partir dessa biomassa.

Agradecimentos

Gostaria de expressar minha gratidão às seguintes instituições e pessoas que desempenharam um papel fundamental na realização deste estudo: à Universidade Federal de Itajubá (UNIFEI) e à Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) pelo apoio financeiro e recursos para condução desta pesquisa; ao professor Hugo Perazzini , por sua orientação valiosa, insights perspicazes e dedicação incansável ao longo deste projeto; à Alice Leonel, por sua dedicação extrema à favor da ciência; à família e amigos, pelo apoio inabalável e incentivo moral durante todo o processo; e finalmente, gratidão a Deus pela oportunidade de realizar este trabalho e pelas vitórias que recebi ao longo dessa jornada acadêmica.

Referências

BENEVIDES, Lorena Coelho. Pirólise do bagaço de laranja: análise cinética dos estágios de secagem e devolatização. 2015.

CHERUBINI, F.; Strømman, AH Avaliação do ciclo de vida de sistemas de bioenergia: Estado da arte e desafios futuros. *Tecnologia de Biorecursos*, v. 2, pág. 437-451, 2011.

HENDRIKS, AT e Zeeman, G. (2009). Pré-tratamentos para aumentar a digestibilidade da biomassa lignocelulósica. Tecnologia de recursos biológicos, 100(1), 10-18.

SANTOS, Matheus Maciel; PASOLINI, Fernanda Souza; COSTA, Ana Paula Oliveira. Caracterização físico-química do caroço e da fibra do açaí (Euterpe oleracea mart.) via métodos clássicos e instrumentais. **Brazilian Journal of Production Engineering**, v. 9, n. 2, p. 143-160, 2023.

SANTOS, Vanuza Oliveira et al. Pirólise da biomassa Amazônica: parâmetros cinéticos e termodinâmicos usando análise termogravimétrica. 2022.

SLUITER, A. et al. Determinação de carboidratos estruturais e lignina em biomassa. Procedimento Analítico Laboratorial (LAP). Relatório Técnico NREL/TP-510-42618. Laboratório Nacional de Energia Renovável, 2008.

ZABED, H., Sahu, JN, Boyce, AN e Faruq, G. (2016). Produção de etanol combustível a partir de biomassa lignocelulósica: Uma visão geral sobre matérias-primas e abordagens tecnológicas. Avaliações de Energia Renovável e Sustentável, 66, 751-774.