Ciência, Tecnologia e Inovação para um Brasil Justo, Sustentável e Desenvolvido

ANÁLISE DAS CONDIÇÕES SINÓTICAS ASSOCIADAS A EVENTOS EXTREMOS DE PRECIPITAÇÃO REGISTRADOS NA BACIA DO RIO PARAÍBA DO SUL ENTRE OS DIAS 10 E 14 DE FEVEREIRO DE 2020

Isabelly B. D. S. Gomes¹ (IC), Vanessa S. B. Carvalho¹ (PQ), Michelle S. Reboita¹ (PQ)

Palayras-chave: Análise sinótica. Frente Fria. ZCAS.

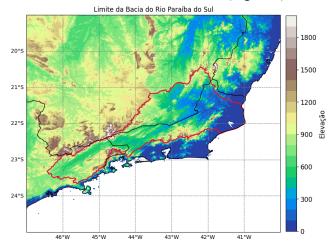
Introdução

A Bacia do Rio Paraíba do Sul (BRPS) está localizada em uma das regiões mais desenvolvidas do Brasil e entre os estados com maior densidade populacional, sendo eles: São Paulo, Rio de Janeiro e Minas Gerais. Logo, a região se destaca economicamente e possui uma relevância estratégica no cenário nacional. Possui área de drenagem com cerca de 55.500 km² (Correa & Costa, 2016), compreendida entre os paralelos 20° 26' e 23° 00' e os meridianos 41° 00'e 46° 30' oeste de Greenwich. O principal rio da BRPS é o Rio Paraíba do Sul, com extensão aproximada de 1.130 km (Cavalcanti; Marques, 2016), onde cerca de 8,4 milhões de pessoas vivem na bacia, em 184 municípios (Agevap, 2013; Agevap, 2006).

O clima que predomina a região é subtropical quente e úmido, sendo influenciado pela altitude e afluências de ventos marinhos (Ceivap, 2020), com temperatura média anual variando entre 18°C e 24°C (Marengo, 2005) e precipitação acumulada anual excedendo 2.100 mm (Oliveira, 2022). Nessa região, volumes elevados de precipitação estão associados a uma série de fenômenos meteorológicos como sistemas frontais, a Zona de Convergência do Atlântico Sul (ZCAS) e sistemas de mesoescala (Reboita et al., 2012).

A ZCAS é caracterizada por uma persistente banda de nebulosidade e precipitação associada à convergência dos ventos em baixos níveis (Carvalho et al., 2004; Grimm, 2011), sendo responsável por sequências de dias chuvosos que muitas vezes acabam causando eventos extremos de precipitação e, por consequência, inundações e deslizamentos de terra (Seluchi e Chou, 2009; Reboita et al., 2017).

Com relação aos sistemas frontais, esses correspondem ao encontro de massas de ar com forte gradiente térmico (Ferreira e Calvanti, 2022). Quando o ar frio avança sob uma região de ar quente e substitui o ar daquela região, forma-se a zona frontal denominada como frente fria (Holender; Santos, 2023). São responsáveis por mudanças bruscas de temperatura e pressão atmosférica, que modificam as condições


meteorológicas locais, causando ventanias, nebulosidade e muitas vezes precipitação, que pode ser volumosa e/ou intensa (Ynoue et al., 2017).

Nesse contexto, teve-se como objetivo realizar um estudo de caso entre o período de 10 a 14 de fevereiro de 2020, quando ocorreram eventos extremos de precipitação na BRPS. Esse estudo justifica-se pelo fato de prover informações para o planejamento na operação do Sistema Hidráulico da BRPS.

Metodologia

Área de Estudo e Dados utilizados

A área de estudo compreende a região da BRPS, situada na região Sudeste do Brasil, entre os estados de São Paulo, Rio de Janeiro e Minas Gerais (Figura 1).

Figura 1. Área de estudo que compreende a Bacia do Rio Paraíba do Sul (delimitada em vermelho) e a topografia da região em metros (colorido).

Os dados diários de precipitação utilizados foram disponibilizados pela Agência Nacional das Águas (ANA) de 2018 a 2021.

Para a avaliação dos sistemas atmosféricos atuantes, foram utilizadas cartas sinóticas nos horários sinóticos padrão (0000, 0600, 1200, 1800 UTC) entre janeiro de 2018 e abril de 2021, disponibilizadas pelo Centro de

VII Simpósio de Iniciação Científica

Ciência, Tecnologia e Inovação para um Brasil Justo, Sustentável e Desenvolvido

Previsão de Tempo e Estudos Climáticos (CPTEC), a partir de http://img0.cptec.inpe.br/~rgptimg/Produtos-Pagina/Cart a-Sinotica/Analise/Superficie/.

Também foram utilizados dados da reanálise ERA5 (Hersbach et al., 2023): componentes do vento (zonal, u, meridional, v), geopotencial, umidade relativa, temperatura e velocidade vertical para os dias referentes ao estudo de caso nos horários sinóticos padrão (0000, 0600, 1200, 1800 UTC) nos níveis de pressão atmosférica: 200, 250, 300, 400, 500, 600, 700, 850, 925 e 1000 hPa obtidos com uma resolução horizontal 0,25° x 0,25° disponível em: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form.

Além destes, também foram considerados dados do ERA5 de pressão a nível médio do mar e CAPE para os dias referentes ao estudo de caso nos horários sinóticos padrão (0000, 0600, 1200, 1800 UTC).

Análises

Foram considerados os mesmos postos pluviométricos descritos por de Oliveira (2023) bem como os limiares para a ocorrência dos extremos de precipitação nessa região a partir da técnica dos percentis (p95 e p99). O p99, considerado neste estudo, representa dias com valores de precipitação muito extremos.

Com base nos limiares p99 identificados por de Oliveira (2023), foi calculada a média do limiar da BRPS, a qual foi utilizada para verificar os registros de eventos extremos de precipitação.

Após a seleção dos eventos para os dias que excederam esse limiar, foi realizada uma análise visual das cartas sinóticas com o objetivo de verificar a atuação dos sistemas atmosféricos predominantes, como sistemas frontais e ZCAS, com o intuito de compreender as possíveis causas dos extremos ocorridos na BRPS.

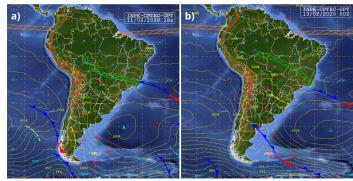
O estudo de caso foi realizado para a identificação das condições meteorológicas atuantes e associadas ao evento extremo de precipitação selecionado. A seleção do período foi realizada através do levantamento de casos com altos volumes de precipitação que apresentavam atuação de ZCAS, sistema frontal ou a justaposição simultânea de ambos.

Esse período foi considerado relevante para o estudo, pois a atuação da ZCAS e de uma frente fria favoreceu a formação de nebulosidade na região da BRPS e consequentemente, os altos índices de precipitação.

Para o período referente ao estudo de caso, foram elaborados os seguintes campos atmosféricos:

1. Divergência (somente valores positivos), altura geopotencial e jatos em 250 hPa;

- 2. Umidade relativa média entre 800 e 500 hPa, altura geopotencial e ômega negativo em 500 hPa;
- 3. Temperatura e vento em 850 hPa;
- 4. Cisalhamento vertical e CAPE.


Para a ocorrência de tempestades é necessário a presença de movimentos ascendentes na atmosfera (ômega negativo), instabilidade (medido a partir da variável CAPE), divergência em altos níveis (250 hPa) e convergência em baixos níveis (850 hPa) (mostrada a partir dos vetores do vento) somado ao cisalhamento vertical (intensidade do vento na vertical), o que faz com que as correntes de ar ascendentes e subsidentes não se anulem, sustentando a tempestade na região.

Resultados e discussão

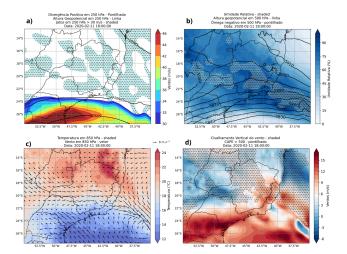
O limiar médio p99 para a detecção de eventos extremos de precipitação na BRPS, baseado nos valores de de Oliveira (2023), foi 50,33 mm. Entre 2018 a 2021 esse limiar foi aplicado e selecionou-se o caso ocorrido entre os dias 10 e 14 de fevereiro de 2020, por apresentar mais de 200 mm de chuva em um único dia. No período de 10 a 14, a chuva total acumulada foi de 245,2 mm e 235,6 na estação Zelinda e Umbaubas, respectivamente.

Análise de caso

Para identificar os sistemas atmosféricos predominantes que atuaram na BRPS entre o período de 10 a 14 de fevereiro de 2020 foram utilizadas cartas sinóticas de superfície para todo o período, um exemplo é mostrado na Figura 2.

Figura 2. Cartas sinóticas de superfície do CPTEC: a) 11/02/2020 às 18 UTC. b) 13/02/2020 às 00 UTC.

Uma síntese dos eventos extremos de precipitação diária durante o período do estudo de caso está apresentada na Tabela 3.


VII Simpósio de Iniciação Científica

Ciência, Tecnologia e Inovação para um Brasil Justo, Sustentável e Desenvolvido

Tabela 3. Informações sobre o máximo de precipitação e o local registrado entre os dias 10 e 14 de fevereiro de 2020.

Máximos de precipitação para o período entre 10 a 14 de fevereiro de 2020		
Data	Estação	Quantidade de precipitação (mm)
10/02/2020	Zelinda	98,2
11/02/2020	Zelinda	86,2
12/02/2020	Itamarati	113,3
13/02/2020	Fazenda Umbaúbas	235,6
14/02/2020	Usina Mauricio	52

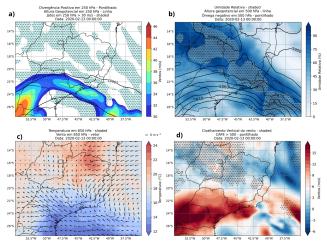

No dia 11/02/2020 às 1800 UTC, há divergência em altos níveis e os jatos começam a se aproximar da região de interesse, próximos de 30 m/s (Figura 3a). A umidade relativa está próxima de 80% e pode ser observada a presença de movimento vertical ascendente (ômega negativo) na região de Minas Gerais (Figura 3b). Há convergência dos ventos em baixos níveis (850 hPa), o que é mostrado através dos vetores que se encontram na região (Figura 3c), onde há atuação da frente, verificando também as regiões com diferentes temperaturas (Figura 2a). O cisalhamento vertical é predominado pelos tons de vermelho, indicando que os ventos em médios níveis (500 hPa) estão intensos, chegando a 10 m/s (Figura 3d).

Figura 3. Composição de campos sinóticos referente ao dia 11/02/2020 - 1800 UTC: a) Divergência (valores positivos) em 250 hPa (pontilhado), altura geopotencial em 250 hPa (linhas pretas) e jatos em 250 hPa > 30 m/s (colorido). b) Umidade relativa (colorido), altura geopotencial em 500 hPa (linhas pretas) e ômega negativo em 500 hPa (pontilhado). c) Temperatura em 850 hPa

(colorido) e vento em 850 hPa (vetor). d) Cisalhamento vertical do vento (colorido) e CAPE > 500 (pontilhado).

No dia 13/02/2020 às 0000 UTC, os jatos passam pela região da BRPS apresentando muita ondulação, atingindo aproximadamente 38 m/s e há divergência em altos níveis (Figura 4a). Nesse dia, há o máximo de umidade relativa, chegando próximo de 90% e com muito movimento vertical ascendente (ômega negativo) (Figura 4b). Há convergência dos ventos na região e identifica-se vetores direcionados do oceano para o continente, trazendo umidade e favorecendo na formação de nebulosidade (Figura 4c). O cisalhamento vertical do vento é predominado pelos tons de vermelho, indicando ventos mais intensos em médios níveis (500 hpa) registrando máximos de 17 m/s (Figura 4d). Através da Tabela 3, o máximo de precipitação que ocorreu na BRPS durante o período estudado foi no dia 13/02/2020 o que corrobora a análise dos campos sinóticos uma vez que as condições mostram-se mais intensas comparada aos outros dias.

Figura 4. Similar a figura 3, referente ao dia 13/02/2020 - 0000 UTC.

Conclusões

O estudo foi realizado a partir da composição média de campos sinóticos com o intuito de analisar as condições que favoreceram a ocorrência de precipitação extrema na região e sua persistência. Os eventos de precipitação registrados no período de 10 a 14 de fevereiro de 2020 estavam associados à atuação de ZCAS e Frente Fria. A divergência em altos níveis (250 hPa) apresentou o suporte dinâmico para o desenvolvimento e avanço dos sistemas na região de interesse. Em baixos níveis (850 hPa), foi verificado a convergência de umidade que se intensificou decorrer durante 0 do período, Ciência, Tecnologia e Inovação para um Brasil Justo, Sustentável e Desenvolvido

contribuindo para a ocorrência de grandes volumes de precipitação na região.

Agradecimentos

Agradecemos à Universidade Federal de Itajubá e ao apoio financeiro do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Referências

AGEVAP - Associação Pró-Gestão das Águas da Bacia Hidrográfica do Rio Paraíba do Sul. Plano de recursos hídricos da bacia do rio Paraíba do Sul: Diagnóstico dos recursos hídricos - relatório final. Laboratório de Hidrologia e Estudos de Meio Ambiente, 2006. (Relatório Contratual R-7). Disponível

em:<www.ceivap.org.br/downloads/PSR-010-R0.pdf.>. Acesso em: 29 ago. 2024.

AGEVAP. Plano integrado de recursos hídricos da bacia hidrográfica do rio Paraíba do Sul e planos de recursos hídricos das bacias afluentes: caracterização sócio-econômica, 2013. Disponível em: www.ceivap.org.br/conteudo/relatorio-diagnostico-rp6-tomo3.pdf. Acesso em: 29 ago. 2024.

CARVALHO, L. M. V.; Jones, C.; Liebmann, B., 2004. The South Atlantic Convergence Zone: persistence, intensity, precipitation and form, relationships extreme with intraseasonal activity. J. Climate 17, 88-108.

CAVALCANTI, B. S., MARQUES, G. R. G. Recursos hídricos e gestão de conflitos: A bacia hidrográfica do rio Paraíba do Sul a partir da crise hídrica de 2014-2015. Revista de Gestão dos Países de Língua Portuguesa, 15(1), 4-16, 2016.

CEIVAP - Comitê de Integração da Bacia Hidrográfica do Rio Paraíba do Sul. Conheça mais sobre a bacia do Rio Paraíba do Sul. Disponível em: https://www.ceivap.org.br/arquivos/CartilhaVirtual.pdf>. Acesso em: 29 ago. 2024.

CORREA, C.A. & Costa, A.J.T. 2016. Usos na bacia hidrográfica do paraíba do sul: considerações acerca da escassez de água, inundações e área de preservação permanente no trecho fluminense. **Revista de Geografia**, 33(3): 62-81.

DE OLIVEIRA, Débora Martins et al. Hydrological and Precipitation Extremes and Trends over the Paraiba do Sul River Basin, Brazil. **Climate**, v. 11, n. 7, p. 138, 2023.

FERREIRA, N. J.; CAVALCANTI, I. F. DE A. **Sistemas meteorológicos atuantes no Brasil**. 1. ed. [s.l.] Oficina de Textos, 2022.

GRIMM, A. M. Interannual climate variability in South America: impacts on seasonal precipitation, extreme events, and possible effects of climate change. **Stochastic Environmental Research and Risk Assessment**, v. 25, n. 4, p. 537–554, maio 2011. https://doi.org/10.1007/s00477-010-0420-1.

HERSBACH, H., et al. ERA5 hourly data on pressure levels from 1940 to present. **Copernicus Climate Change Service (C3S) Climate Data Store (CDS)**, 2023. DOI: 10.24381/cds.bd0915c6.

HERSBACH, H., et al. ERA5 hourly data on single levels from 1940 to present. **Copernicus Climate Change Service (C3S) Climate Data Store (CDS)**, 2023. DOI: 10.24381/cds.adbb2d47.

HOLENDER, Bárbara Velasco; SANTOS, Eliane Barbosa. Análise de tendência dos eventos de precipitação intensa no sudeste do Brasil. **Revista Brasileira de Climatologia**, v. 32, p. 584-606, 2023.

MARENGO, J. A., ALVES, L. M. **Tendências hidrológicas da bacia do rio Paraíba do Sul**. Revista Brasileira de Meteorologia, 20(2), 215-226, 2005.

OLIVEIRA, Débora Martins. **Desenvolvimento e** calibração de um sistema de previsão de eventos extremos de chuva e vazão como suporte à prevenção de inundações: um estudo de caso para a bacia do Paraíba do Sul. 2022. 49 f. Tese (Doutorado em Meio Ambiente e Recursos Hídricos) - Instituto de Recursos Naturais, Universidade Federal de Itajubá, Itajubá (Brasil), 2022.

REBOITA, M. S; ESCOBAR, G; CORRÊA, M. P. Participação em banca de Amanda Caroline de Souza. Classificação de frentes frias polares, frentes subtropicais e cavados baroclínicos. 2017. Trabalho de Conclusão de Curso (Graduação em Ciências Atmosféricas) — Universidade Federal de Itajubá, 2017.

REBOITA, M. S., Krusche, N., Ambrizzi, T., & Rocha , R. P. da (2012). Entendendo o Tempo e o Clima na América do Sul. **Terræ Didatica**, 8(1), 35-50. doi: 10.20396/td.v8i1.8637425.

SELUCHI, M. E., E S. C. CHOU. Synoptic patterns associated with landslide events in the Serra do Mar, Brazil. **Theoretical and Applied Climatology**, 98, 67-77, 2009.

YNOUE, R. Y. et al. Meteorologia: Noções Básicas. 1 ed. São Paulo: Oficina de Textos, 2017.