#### DESENVOLVIMENTO DE SUPERCAPACITOR BASEADO EM NANOCOMPÓSITO DE ÓXIDO DE GRAFENO REDUZIDO E NANOPARTÍCULAS DE PRATA E SUA EFICIÊNCIA DE ARMAZENAMENTO EM PAINEL FOTOVOLTAICO

Maria Eduarda M. Alves (IC)<sup>1</sup>, Adhimar F. Oliveira (PQ)<sup>2</sup>, Maria E. Leyva (PQ)<sup>3</sup> <sup>1</sup>Universidade Federal de Itajubá, <sup>2</sup>Universidade Federal de Itajubá, <sup>3</sup>Universidade Federal de Itajubá.

Palavras-chave: Armazenamento de energia. Caracterização de materiais. Esfoliação eletroquímica.

#### Introdução

Em 2022, os investimentos globais em tecnologias de transição energética atingiram 1,3 trilhão de USD, refletindo a crescente conscientização sobre a crise climática e os riscos associados à grande dependência dos combustíveis fósseis [1]. Como resultado dessa crescente conscientização, o presente trabalho busca desenvolver um supercapacitor de alta tensão de operação baseado em rGO e AgNPs para aplicações em painéis fotovoltaicos, eletrônicos e veículos. Os supercapacitores destacam-se em relação às baterias devido ao rápido armazenamento de energia e alta estabilidade cíclica. Eles conseguem armazenar energia de forma eletroquímica e eletrostática, o que lhes confere alta densidade de potência e longa vida útil [2]. Embora sua capacidade de armazenamento seja inferior do que as baterias de íon de lítio, eles são ideais para fornecer potência instantânea, o que os tornam ideais para complementar baterias e prolongar sua vida útil, sendo valiosos em sistemas fotovoltaicos autônomos.

No que diz respeito à escolha dos materiais, é amplamente reconhecido que o grafeno é uma alternativa promissora devido às suas excelentes propriedades. Entretanto, a produção em larga escala de grafeno puro é um desafio devido à sua baixa eficiência e aos altos custos associados ao processo de fabricação. Para superar essas limitações, este estudo concentrou-se na obtenção do rGO, que mantém propriedades comparáveis ao grafeno puro [3]. Este processo envolveu a esfoliação eletroquímica do grafite comercial, seguida pela redução química do GO. Durante o desenvolvimento deste projeto, uma série de caracterizações foi realizada para avaliar as propriedades do material produzido e confirmar sua viabilidade para a aplicação almejada. A combinação do rGO com AgNPs pode resultar em um material com melhor condutividade e capacidade de armazenamento de energia [4]. Portanto, como objetivo futuro de pesquisa, pretende-se incorporar AgNPs e repetir os mesmos testes.

#### Metodologia

#### Preparação do óxido de grafeno

A preparação do GO começou com a esfoliação eletroquímica "in situ". Esse processo ocorreu em uma célula eletrolítica composta por eletrodos de grafite comerciais. Os eletrodos foram submersos em uma solução de H<sub>2</sub>SO<sub>4</sub> 0,1M. A esfoliação eletroquímica foi conduzida em várias etapas, começando com uma tensão contínua de +5V por 5 minutos e aumentando gradualmente a tensão em +2V por mais 5 minutos, até atingir +13V. Uma fonte de alimentação específica foi utilizada para controlar o processo. Durante a esfoliação, foram observadas bolhas e formação de espuma na superfície da solução, que foram cuidadosamente removidas e lavadas com água destilada até perderem a acidez. Em seguida, os materiais foram secos a 100°C em uma estufa por 24 horas. O restante da solução também passou pelo mesmo processo de filtração e secagem. É digno de nota que, visualmente, não é possível distinguir entre o grafite e o GO. No entanto, ao longo do processo, conseguimos obter uma proporção significativamente maior de GO, que se manifesta de maneira evidente na forma de uma espuma que se desenvolve.

**Processos para obtenção do óxido de grafeno reduzido** Para obter o rGO, as ligações de oxigênio no carbono foram quebradas de duas maneiras para fins comparativos. Uma delas envolveu a secagem em estufa a 100°C por 24 horas novamente, e o outro método utilizou a Calorimetria Exploratória Diferencial (DSC). Durante algumas caracterizações, foi possível notar propriedades distintas entre o óxido produzido na etapa de estufa e o óxido produzido pela DSC.

#### Técnicas de caracterização

• Espectroscopia no ultravioleta-visível (UV/Vis): A caracterização por UV/Vis envolveu a medição da absorbância das soluções contendo dispersões de rGO, feito na estufa, em ácido sulfúrico em uma cubeta de quartzo. Isso foi realizado utilizando um espectrômetro localizado no IFQ-UNIFEI. O objetivo era identificar a faixa de comprimento de onda em que o material absorve mais energia luminosa, permitindo comparações com a faixa de emissão descrita na literatura para confirmar a identificação do nosso material como rGO.

• Calorimetria exploratória diferencial (DSC): A DSC

# VI Simpósio de Iniciação Científica Ciência como ferramenta de transformação da sociedade

2023

permitiu a medição da temperatura e do fluxo de calor associados às transições em materiais. Foi usado para reduzir o óxido de grafeno, uma atmosfera de nitrogênio sob alta pressão. O equipamento utilizado foi o DSC-60 Plus da Shimadzu no Laboratório de Altas Tensões-UNIFEI. A amostra ficou 1 hora no equipamento, variando a temperatura de 0°C a 1000°C, revelando que após atingir a temperatura de 250°C, não ocorriam muitas reações significativas, portanto, a TGA usou essa temperatura como referência.

• Análise termogravimétrica (TGA): A análise termogravimétrica teve como objetivo investigar o comportamento térmico do GO em relação às temperaturas de degradação térmica e perdas de massa. Para realizar essa análise, empregamos um equipamento TGA-50 da Shimadzu, localizado no Laboratório de Alta Tensão-UNIFEI, utilizamos uma amostra com uma massa inicial de 3900 mg. Essa caracterização pode ser dividida em duas etapas. Na primeira, a amostra é aquecida a uma taxa de 20 °C/min até atingir 250 °C. Na segunda, a amostra é mantida a 250 °C por 60 minutos sem mudanças na temperatura., em uma atmosfera de nitrogênio com um fluxo de 50 mL/min.

• Microscopia eletrônica de varredura (MEV): A MEV foi realizada para examinar a morfologia do grafite, GO e rGO. O equipamento utilizado foi o Superscan SSX-550 SEM-EDX no Laboratório de Caracterização Estrutural LCE/IEM-UNIFEI, com um feixe de elétrons de 15kV.

• Espectroscopia na região do infravermelho por transformada de Fourier (FTIR): As amostras de GO e rGO foram preparadas como pastilhas, cada uma contendo 5% de material e o restante de Kbr. Posteriormente, essas pastilhas foram submetidas à caracterização à temperatura ambiente por meio da espectroscopia de infravermelho com transformada de Fourier. Utilizou-se o espectrômetro Shimadzu, modelo IR Tracer 100, localizado no Laboratório de Alta Tensão. A análise foi conduzida na faixa de frequência de 600 -4000 cm<sup>-1</sup>, com uma resolução de 4 cm<sup>-1</sup>.

• Difração de raios-X (DRX): A difração de raio-X foi realizada com o equipamento Panalytical X'Pert Pro que utiliza um feixe de comprimento de onda igual a 0,154nm. Essa técnica é fundamental para determinar as fases cristalinas em uma amostra, no nosso caso o grafite, o GO e o rGO.

• Espectroscopia por energia dispersiva (EDS): A espectroscopia de raios-X por dispersão em energia foi realizada para analisar a composição elementar dos materiais estudados, no Laboratório de Caracterização Estrutural LCE/IEM-UNIFEI.

Voltametria cíclica potenciostatica: A voltametria cíclica foi conduzida usando um potenciostato Metrohm Autolab para analisar o desempenho de uma pastilha de rGO reduzido em estufa de 0,0017g, que ficou 10 minutos em uma prensa hidráulica suportando 2 Toneladas, em termos de capacitância. Para comandar tal equipamento fez-se uso do Software NOVA 2.0. As curvas de voltametria cíclica foram realizadas utilizando diferentes taxas de varredura, no intervalo entre 0,001 e 0,005 V/s, com a faixa de potencial de -0,2 V a 1 V.

#### Resultados e discussão

#### Espectroscopia no ultravioleta-visível (UV/Vis)

A figura 1, correspondente à espectroscopia no UV-vis, e exibe um pico de absorbância próximo a 280nm. Isso sugere que o material que obtivemos está em conformidade com as típicas propriedades do GO, conforme comparado com a literatura [5]. Além disso, o pico de absorbância coincide com o espectro de emissão solar [6].





Nas figuras 2 e 3, é possível observar os band gaps ópticos do rGO calculados via Python.



Figura 4 - Fluxo de calor DSC pela temperatura.



### VI Simpósio de Iniciação Científica Ciência como ferramenta de transformação da sociedade

Figura 5 – Gráfico TGA, perda de massa em Espec



Observando a figuras 4 e 5, fica evidente que a maioria das quebras de ligação ocorrem até atingir a temperatura de 250°C. É importante mencionar que o processo de quebra começou a partir de 25°C. Após a marca de 250°C, não se observaram muitas reações, apesar do prolongado tempo de exposição da amostra. Isso sugere que a etapa crítica de redução, na qual as ligações foram quebradas produzir rGO. ocorreu para 0 predominantemente antes de 250°C. É notável que o processo de redução se mostrou eficaz, visto que a massa da amostra foi reduzida em mais da metade. Inicialmente, a amostra pesava 3,9mg e, após o processo de redução, o peso foi reduzido para 1,7mg. Vale ressaltar que, a perda de massa está relacionada ao DSC pelo fato dessa análise medir as mudanças de energia térmica em função da temperatura, que estão diretamente relacionadas às mudanças de massa durante a análise TGA.

#### Microscopia eletrônica de varredura (MEV)

Ao comparar as imagens da Figura 6, 7 e 8, observa-se que 6 apresenta um estado sólido, ou seja, é o grafite antes de passar pelo processo de esfoliação eletroquímica. Já em 7, é possível visualizar facilmente as folhas de GO formadas. Em 8 é possível observar ainda mais folhas que em 7, o que já era de se esperar, pois os grupos funcionais foram quebrados durante o processo de redução.

Figura 6 – MEV do grafite. Figura 7 – MEV do GO.





 $\begin{array}{c} \underset{WD=13.0 \text{ mm}}{\text{ mm}} & \underset{Mag=2.00 \text{ KX}}{\text{ Signal } A = \text{NTS BSD}} & \underbrace{20 \text{ } \text{ mm}}_{\text{Mag}=2.00 \text{ KX}} & \underbrace{20 \text{ } \text{ } \text{ mm}}_{\text{LCE} - \text{Unifer}} \\ \hline \end{array} \\ \hline \end{array}$ 



### Espectroscopia na região do infravermelho por transformada de Fourier (FTIR)



Com base na literatura, o espectro de FTIR do GO, observado na figura 9, exibe características como a presença de grupos -OH e C-OH em torno de 3364,20 cm<sup>-1</sup>, sugerindo álcool ou água, grupos C=O estirados em -COOH em cerca de 1735 cm<sup>-1</sup>, ligações C=C em 1611 cm<sup>-1</sup>, grupos -OH em cerca de 1400 cm<sup>-1</sup>, modos de flexão em grupamentos CO-C do grupo epóxi em torno de 1230 cm<sup>-1</sup>, ligações C-C ligeiramente acima de 1037 cm<sup>-1</sup> e ligações C-O logo abaixo de 868,34 cm<sup>-1</sup>, indicando oxidação do grafite com introdução de grupos funcionais [7].

#### Difração de raios-X (DRX)





Na figura 10, observamos a presença de picos estreitos e bem definidos, indicativos de uma estrutura cristalina altamente ordenada, típica do grafite. Por outro lado, na figura 11, devido à desordem das folhas de GO produzidas, o padrão de difração é amorfo nessa banda,

## VI Simpósio de Iniciação Científica Ciência como ferramenta de transformação da sociedade

#### com o pico referente ao óxido de grafeno. Espectroscopia por energia dispersiva (EDS)

Como esperado, os elementos predominantes são o carbono e o oxigênio, como pode ser constatado na figura 12. Entretanto, também foram identificadas algumas impurezas (Fe, Al) devido ao uso do grafite comercial, onde é comum que impurezas tenham sido incorporadas intencionalmente para conferir ao material características de maior maleabilidade. Vale destacar que o óxido resultante do processo de redução por DSC apresentou uma estrutura com menos impurezas e uma menor quantidade de ligações de O.

Figura 12-EDS do rGO, representando o C em vermelho e O em verde.



#### Voltametria cíclica potenciostática

O desempenho da pastilha de rGO foi analisada por meio da voltametria cíclica potenciostática. Essa pastilha foi utilizada como eletrodo e a capacitância especifica Ce em F/g pode ser calculada pela equação 1:

$$C_{e} = \frac{\int_{E_{1}}^{E_{2}} i(E)dE}{2(E2-E1)mv'} (1)$$

Onde i(E) é a corrente, (E2-E1) é a janela de potencial, m é a massa média do material em gramas, v' é a taxa de varredura e  $\int_{E1}^{E2} i(E) dE$  é a carga voltamétrica total obtida pela integração de varreduras. Segue abaixo uma tabela com os valores da Ce para cada taxa de varredura: Tabela  $1 - C_e$  para cada taxa de varredura.

| 1                      |           |
|------------------------|-----------|
| Taxa de varredura mV/s | F/g (rGO) |
| 1                      | 11.764706 |
| 2                      | 5.882353  |
| 3                      | 3.921569  |
| 4                      | 2.941176  |
| 5                      | 2.352941  |





Obtivemos a maior Ce, de 11.764706F/g, a uma taxa de varredura de 1mV/s, conforme mostrado na figura 13. Usamos no máximo 1V de tensão devido à não linearidade dos resultados ao aplicar grandes potenciais.

#### Conclusões

Essas análises proporcionaram uma compreensão aprofundada das propriedades físicas, químicas e elétricas do rGO, contribuindo significativamente para a avaliação do seu potencial em aplicações futuras. Especificamente, destacamos o seu uso promissor no armazenamento de energia em SCs, com foco em sua aplicação em painéis fotovoltaicos. A pesquisa abriu caminho para avanços na produção e aplicação prática do rGO em sistemas de armazenamento de energia, representando um passo importante na pesquisa de materiais para tecnologias sustentáveis e eficientes.

#### Agradecimentos

O autor expressa sua gratidão às agências brasileiras CAPES, CNPq e Fapemig pelo generoso apoio financeiro concedido à pesquisa. Também gostaria de estender os agradecimentos à UNIFEI pelo fornecimento de recursos essenciais, como equipamentos e laboratórios.

#### Referências

[1] IRENA and CPI (2023). Global landscape of renewable energy finance. International Renewable Energy Agency, Abu Dhabi, 2023.

[2] LAHYANI A.; VENET P.; GUERMAZI A.; TROUDI A. Battery/Supercapacitors Combination in Uninterruptible Power Supply (UPS). IEEE Transactions on Power Electronics, 2013.

[3] GOMES, O. Preparação e caracterização de eletrodos a base de óxido de grafeno reduzido in situ para aplicação como supercapacitores. Dissertação (Mestrado em Engenharia Química) - Faculdade de Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2017.

[4] SILVA, S. Síntese fotoquímica, caracterização e aplicação em sensores de nanocompósitos de óxido de grafeno e nanopartículas de prata. Dissertação (Mestrado em Química) - Universidade de Brasília, Brasília, 2022.

[5] PEREIRA, E. Compósitos de óxido de grafeno e polianilina obtidos "in situ" por via eletroquímica. Trabalho Final de Pós-Graduação, UNIFEI, 2022.

[6] CETESB. Informações de Radiação. Governo do Estado de São Paulo, 2020.

[7] Terence, M.; GUEVARA, J. Obtenção de óxido de grafeno a partir de grafite nacional. Projeto de Pesquisa, Mackenzie, 2018.